Frequently Asked Questions about Agentic AI

· 7 min read
Frequently Asked Questions about Agentic AI

What is agentic AI, and how does it differ from traditional AI in cybersecurity? Agentic AI is a term used to describe autonomous, goal-oriented, systems that are able to perceive their environment, take decisions, and act to achieve specific goals. Unlike traditional AI, which is often rule-based or reactive, agentic AI systems can learn, adapt, and operate with a degree of independence. In cybersecurity, agentic AI enables continuous monitoring, real-time threat detection, and proactive response capabilities.
How can agentic AI improve application security (AppSec?) practices?  ai security implementation costs  can revolutionize AppSec practices by integrating intelligent agents into the software development lifecycle (SDLC). These agents can continuously monitor code repositories, analyze commits for vulnerabilities, and leverage advanced techniques like static code analysis, dynamic testing, and machine learning to identify a wide range of security issues. Agentic AI can also prioritize vulnerabilities based on their real-world impact and exploitability, providing contextually aware insights for remediation. What is a code property graph (CPG), and why is it important for agentic AI in AppSec? A code property graph (CPG) is a rich representation of a codebase that captures relationships between various code elements, such as functions, variables, and data flows. By building a comprehensive CPG, agentic AI can develop a deep understanding of an application's structure, potential attack paths, and security posture. This contextual awareness allows the AI to make better security decisions and prioritize vulnerabilities. It can also generate targeted fixes.  AI-powered automatic vulnerability fixing leverages the deep understanding of a codebase provided by the CPG to not only identify vulnerabilities but also generate context-aware, non-breaking fixes automatically. The AI analyzes the code surrounding the vulnerability, understands the intended functionality, and crafts a fix that addresses the security flaw without introducing new bugs or breaking existing features. This method reduces the amount of time it takes to discover a vulnerability and fix it. It also relieves development teams and provides a reliable and consistent approach to fixing vulnerabilities.  Some potential challenges and risks include:

Ensure trust and accountability for autonomous AI decisions
AI protection against data manipulation and adversarial attacks
Building and maintaining accurate and up-to-date code property graphs
Ethics and social implications of autonomous systems
Integrating agentic AI into existing security tools and processes
How can organizations ensure that autonomous AI agents are trustworthy and accountable in cybersecurity? Organizations can ensure the trustworthiness and accountability of agentic AI by establishing clear guidelines and oversight mechanisms. This includes implementing robust testing and validation processes to verify the correctness and safety of AI-generated fixes, maintaining human oversight and intervention capabilities, and fostering a culture of transparency and responsible AI development. Regular audits, continuous monitoring, and explainable AI techniques can also help build trust in the decision-making processes of autonomous agents.  What are some best practices for developing and deploying secure agentic AI systems? Best practices for secure agentic AI development include:

Adopting safe coding practices throughout the AI life cycle and following security guidelines
Protect against attacks by implementing adversarial training techniques and model hardening.
Ensuring data privacy and security during AI training and deployment
Validating AI models and their outputs through thorough testing
Maintaining transparency in AI decision making processes
Regularly monitoring and updating AI systems to adapt to evolving threats and vulnerabilities
How can AI agents help organizations stay on top of the ever-changing threat landscape? By continuously monitoring data, networks, and applications for new threats, agentic AI can assist organizations in keeping up with the rapidly changing threat landscape. These autonomous agents can analyze vast amounts of security data in real-time, identifying new attack patterns, vulnerabilities, and anomalies that might evade traditional security controls. By learning from each interaction and adapting their threat detection models, agentic AI systems can provide proactive defense against evolving cyber threats, enabling organizations to respond quickly and effectively. What role does machine learning play in agentic AI for cybersecurity? Agentic AI is not complete without machine learning. It enables autonomous agents to learn from vast amounts of security data, identify patterns and correlations, and make intelligent decisions based on that knowledge. Machine learning algorithms power various aspects of agentic AI, including threat detection, vulnerability prioritization, and automatic fixing. By continuously learning and adapting, machine learning helps agentic AI systems improve their accuracy, efficiency, and effectiveness over time.  Agentic AI can streamline vulnerability management processes by automating many of the time-consuming and labor-intensive tasks involved. Autonomous agents are able to continuously scan codebases and identify vulnerabilities. They can then prioritize these vulnerabilities based on the real-world impact of each vulnerability and their exploitability. The agents can generate context-aware solutions automatically, which reduces the amount of time and effort needed for manual remediation. By providing real-time insights and actionable recommendations, agentic AI enables security teams to focus on high-priority issues and respond more quickly and effectively to potential threats.

What are some examples of real-world agentic AI in cybersecurity? Agentic AI is used in cybersecurity.

Autonomous threat detection and response platforms that continuously monitor networks and endpoints for malicious activity
AI-powered vulnerability scans that prioritize and identify security flaws within applications and infrastructure
Intelligent threat intelligence systems that gather and analyze data from multiple sources to provide proactive defense against emerging threats
Automated incident response tools can mitigate and contain cyber attacks without the need for human intervention
AI-driven solutions for fraud detection that detect and prevent fraudulent activity in real time
How can agentic AI help bridge the skills gap in cybersecurity and alleviate the burden on security teams? Agentic AI helps to address the cybersecurity skills gaps by automating repetitive and time-consuming security tasks currently handled manually. Agentic AI systems free human experts from repetitive and time-consuming tasks like continuous monitoring, vulnerability scanning and incident response. Additionally, the insights and recommendations provided by agentic AI can help less experienced security personnel make more informed decisions and respond more effectively to potential threats.  What are the potential implications of agentic AI for compliance and regulatory requirements in cybersecurity? Agentic AI helps organizations to meet compliance and regulation requirements more effectively. It does this by providing continuous monitoring and real-time threat detection capabilities, as well as automated remediation. Autonomous agents ensure that security controls and vulnerabilities are addressed promptly, security incidents are documented, and reports are made. However, the use of agentic AI also raises new compliance considerations, such as ensuring the transparency, accountability, and fairness of AI decision-making processes, and protecting the privacy and security of data used for AI training and analysis.  For organizations to successfully integrate agentic artificial intelligence into existing security tools, they should:

Assess the current security infrastructure to identify areas that agentic AI could add value.
Create a roadmap and strategy for the adoption of agentic AI, in line with security objectives and goals.
Make  machine learning security testing  that AI agent systems are compatible and can exchange data and insights seamlessly with existing security tools.
Support and training for security personnel in the use of agentic AI systems and their collaboration.
Create governance frameworks to oversee the ethical and responsible use of AI agents in cybersecurity
What are some emerging trends and future directions for agentic AI in cybersecurity? Some emerging trends and future directions for agentic AI in cybersecurity include:

Collaboration and coordination among autonomous agents from different security domains, platforms and platforms
AI models with context-awareness and advanced capabilities that adapt to dynamic and complex security environments
Integration of agentic AI with other emerging technologies, such as blockchain, cloud computing, and IoT security


To protect AI systems, we will explore novel AI security approaches, including homomorphic cryptography and federated-learning.
Advancement of explainable AI techniques to improve transparency and trust in autonomous security decision-making
How can agentic AI help organizations defend against advanced persistent threats (APTs) and targeted attacks? Agentic AI can provide a powerful defense against APTs and targeted attacks by continuously monitoring networks and systems for subtle signs of malicious activity. Autonomous agents can analyze vast amounts of security data in real-time, identifying patterns and anomalies that might indicate a stealthy and persistent threat. By learning from past attacks and adapting to new attack techniques, agentic AI can help organizations detect and respond to APTs more quickly and effectively, minimizing the potential impact of a breach.

What are the benefits of using agentic AI for continuous security monitoring and real-time threat detection? The benefits of using agentic AI for continuous security monitoring and real-time threat detection include:

24/7 monitoring of networks, applications, and endpoints for potential security incidents
Rapid identification and prioritization of threats based on their severity and potential impact
Reduced false positives and alert fatigue for security teams
Improved visibility of complex and distributed IT environments
Ability to detect new and evolving threats which could evade conventional security controls
Security incidents can be dealt with faster and less damage is caused.
How can agentic AI improve incident response and remediation processes? Agentic AI has the potential to enhance incident response processes and remediation by:

Automatically detecting and triaging security incidents based on their severity and potential impact
Providing contextual insights and recommendations for effective incident containment and mitigation
Automating and orchestrating incident response workflows on multiple security tools
Generating detailed incident reports and documentation for compliance and forensic purposes
Learning from incidents to continuously improve detection and response capabilities
Enabling faster, more consistent incident remediation and reducing the impact of security breaches
What are some of the considerations when training and upgrading security teams so that they can work effectively with AI agent systems? To ensure that security teams can effectively leverage agentic AI systems, organizations should:

Give comprehensive training about the capabilities, limitations and proper usage of agentic AI tools
Foster a culture of collaboration and continuous learning, encouraging security personnel to work alongside AI systems and provide feedback for improvement
Develop clear protocols and guidelines for human-AI interaction, including when to trust AI recommendations and when to escalate issues for human review
Invest in programs to help security professionals acquire the technical and analytic skills they need to interpret and act on AI-generated insights
To ensure an holistic approach to the adoption and use of agentic AI, encourage cross-functional collaboration among security, data science and IT teams.
How can organizations balance?

How can we balance the benefits of AI and human decision-making with the necessity for human oversight in cybersecurity? To strike the right balance between leveraging agentic AI and maintaining human oversight in cybersecurity, organizations should:

Assign roles and responsibilities to humans and AI decision makers, and ensure that all critical security decisions undergo human review and approval.
Implement transparent and explainable AI techniques that allow security personnel to understand and trust the reasoning behind AI recommendations
Develop robust testing and validation processes to ensure the accuracy, reliability, and safety of AI-generated insights and actions
Maintain human-in-the-loop approaches for high-stakes security scenarios, such as incident response and threat hunting
Foster a culture of responsible AI use, emphasizing the importance of human judgment and accountability in cybersecurity decision-making
Regularly monitor and audit AI systems to identify potential biases, errors, or unintended consequences, and make necessary adjustments to ensure optimal performance and alignment with organizational security goals